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EXCUTIVE SUMMARY

A fully 3-D numerical model is developed to represent magnetic damping of complex

fluid flow, heat transfer and electromagnetic field distributions in a melt cavity. The model is

developed based on our in-house finite element code for the fluid flow, heat transfer and

electromagnetic field calculations. The computer code has been tested against benchmark test

problems that are solved by other commercial codes as well as analytical solutions whenever

available. The numerical model is tested against numerical and experimental results for water

reported in literature. With the model so tested, various numerical simulations are carried out for

the Sn-35.5% Pb melt convection and temperature distribution in a cylindrical cavity with and

without the presence of a transverse magnetic field. Numerical results show that magnetic

damping can be effectively applied to reduce turbulence and flow levels in the melt undergoing

solidification and over a certain threshold value a higher magnetic field resulted in a higher

velocity reduction. It is found also that for a fully 3-D representation of the magnetic damping

effects, the electric field induced in the melt by the applied DC magnetic field does not vanish, as

some researchers suggested, and must be included even for molten metal and semiconductors.

Also, for the study of the melt flow instability, a long enough time has to be applied to ensure the

final fluid flow recirculation pattern. Moreover, our numerical results suggested that there seems

to exist a threshold value of applied magnetic field, above which magnetic damping becomes

possible and below which the convection in the melt is actually enhanced. Because of the limited

financial resource allocated for the project, we are unable to carry out extensive study on this

effect, which should warrant further theoretical and experimental study. In that endeavor, the

developed numerical model should be very useful; and the model should serve as a useful tool

for exploring necessary design parameters for planning magnetic damping experiments and

interpreting the experimental results.



1. INTRODUCTION

Recently, NASA Lewis has conducted a set of Sn-Pb alloy solidification experiments in

High Temperature Directional Solidification Furnace under the influence of a transverse

magnetic field to investigate magnetic damping effects (Song, Tewari and de Groh, 1996). The

schematical representation of their system is sketched below in Figure 1.
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Figure 1. Schematic representation of the solidification processes at NASA Lewis.

With the experimental setup, they studied fluid flow, thermal transport and

macrosegregation during solidification of Pb-Sn alloys with and without an externally imposed

horizontal magnetic field. Temperature fluctuations were observed in the liquid pool during the

solidification processes. It was found that these thermal fluctuations evolve from none to cyclic

to time periodic having multiharmonics and finally to random as the Rayleigh number of the

system increases. The application of the magnetic field decreases convection level in the liquid

pool, but even high magnetic field (0.45 T) was unable to eliminate the convection. Application

of the magnetic fields also resulted in changing temperature fluctuations from sinusoidal to

pulsed wave behavior. These experimental measurements are very useful for providing first

hand evidence on the effectiveness of magnetic damping. However, accompanying theoretical

analyses are needed to determine quantitatively how the thermal field is affected by a

magnetically damped fluid flow field during solidification.

The objective of this small grant is to initiate the development of first principle

mathematical models for magnetically damped fluid flow and heat transfer in solidifying liquids.

Our intention is two fold: (1) to acquire a basic understanding of magnetically damped flow

phenomena in the aforementioned system by studying a simplified system such as a 3-D

cylindrical cavity without considering the complex phase change phenomena associated with

solidification; and (2) to establish a capability for 3-D simulation of magnetically damped flows

with which further studies on magnetic damping effects on melt flow and solidification processes

can be conducted. Following this direction, we have developed a full 3-D finite element model,

based on our in-house fluid flow and heat transfer and electromagnetic model capabilities, for

magnetic damping of fluid flow and thermal phenomena in a 3-D cylindrical cavity. The



diameter of the cavity is the same as used in the Lewis experiments (Song et al., 1996), but the

length is varied to simulate the different stages of solidification. Sn-Pb melt is used and the

properties of the melt are provided by H. C. de Groh at NASA Lewis, along with other operating

parameters. Both pseudo steady state and transient numerical models were developed. Some

simulations were conducted with the model developed to both demonstrate the capability of the

model and also to gain some basic understanding of magnetic damping effect during melt

processing of relevance to NASA Lewis experiments. The modeling strategy, numerical results

and findings and the future directions on the work are described below.

2. THE 3-D FINITE ELEMENT MODEL

The mathematical formulation of the magnetic damped fluid flow and heat transfer

problem is given in Appendix I. Because of the limited funds available, we focus our attention

on the model capability development and basic understanding, rather than a comprehensive

study, of the magnetic damping effects on fluid flow and heat transfer phenomena in the Sn-Pb

melts during solidification. Thus, we consider natural convection and magnetic damping

phenomena in a 3-D cylindrical cavity with its side thermally insulated and top and bottom

surfaces fixed at lower and high temperatures. Solidification and other complicating factors such

as crystal growth rate, etc., are not considered in the model to simplify the calculations.

Originally the models were planned to be developed using FIDAP, a commercial finite

element code for flow and thermal computations, and simulations were to be carried out using

the Supercomputers at the University of Illinois. However, two difficulties encountered during

the course of the model development with FIDAP. First several testing runs with FIDAP for

flows without applied magnetic fields were made on the Supercomputer and it was found that it

took too long to obtain the results. The major time was spent on waiting and queue list, even

though the highest priority was employed. For example, for a 3-D mesh of 12 × 5 x 10 8-node

elements used for the simulation of natural convection in a cylinder of our interest, one transient

run that requires about 200 time steps took about 4 CPU hours; but the real turnout time was

about 4 to 5 days, because of the heavy usage of the machine. Second, some time during the

model development when we carefully studied FIDAP's formulation of magnetic damping

problems as stated in their manual (p. 2-32, FIDAP Theoretical Manual), we found that the

current density resulting from the interaction of the magnetic field with the fluid flow field seems

to be calculated incorrectly. Since the source code is not available, we were not able to confirm

whether this is a typographical error or the code calculates the problem as stated (usually it does

and should also). Because of the limited computing sites where FIDAP is available and because

there is potentially an error in their problem formulation, we started to develop our own 3-D

finite element code for the planned numerical modeling effort. Fortunately, at that time, our 2-D

finite element model was completed and was in use for g-jitter induced fluid flow, heat and mass

transfer calculations. Our 3-D code development was then just an extension of the 2-D finite

element code. The finite element formulation of the magnetic damping problems based on

which our code was developed is provided in Appendix II. The development of our own code

entailed program coding, debugging and extensive testing of the code against analytical solutions

and calculations from other codes such as FIDAP and FLOW3D for benchmark type problems.

Some of testing has been discussed in one of our recent publications (Pan, Li and deGroh, 1997).



It shouldbenotedthathavingour own codegivesustremendousflexibility, althoughthe
developmentprocessitself is a bit painful in that variouscases,including thosenot of direct
interest to our model development,must be examinedto ensurethe correctnessof the code.
With our own code,we now are ableto load the programonto any platforms we can get an
accessto and thus many computationalcasescan be run simultaneously to increase the
computationalefficiency. Many calculationswere carriedout on the LSU IBM-6000 RISC
clustermachines,whereseveralrunscanbe madesimultaneously.

In Fall 1997,thePI left LSU to join the Schoolof MechanicalandMaterialsEngineering
at WashingtonStateUniversity. The modelwas importedfrom LouisianaStateUniversity to
WashingtonState University and additional caseswere run on an Onix machine,which is
capableof supercomputing.For the resultspresentedbelow, a typical run of 2000 time steps
leadingto a steadystatewould take20CPU hoursfor a meshsizeof 17x6x108-nodeelements
on the Onix machine. This changein environmentrequiredre-settingup the local computing
environmentfor the PI's laboratory,including purchaseof PCs,printers and tuning software,
etc.,which arerequiredfor printing out thecalculatedresultsandpreparingthis report.

3. NUMERICAL RESULTS AND FINDINGS

The developed numerical model is used to carry out simulations for magnetically damped

flows in Sn-Pb melts for various operating conditions. The parameters for the calculations are

given in Tables 1 and 2. To test the mesh dependency of our calculations, numerical

experiments were carried out using different mesh sizes or different number of elements.

Basically, different meshes were used until the results no longer show the mesh dependency.

The mesh, as shown in Figure A2, is the one of the meshes used for the calculations for cavities

with small h/d ratio. More meshes are placed in the vertical direction when a larger h/d ratio

cavity is considered. Unless stated otherwise, all the calculations for magnetic damping assumed

that the magnetic field is applied in the x-direction (see Figure A1). For the results presented in

the figures below, the time and velocity are normalized by the time factor (x) and the velocity

factor (Uo) given in Table 2 and Rayliegh numbers and other conditions are based on the stability

diagram given by Muller (1988).

(a) Test against published results for known conditions

Before reporting the results on Sn-35.5% Pb melt flows, we would like to discuss some

of testing cases with water for which published work is available. Muller's research group had

published results on flow instability of water in a cylinder heated from below for various aspect

ratios and also conducted experiments to very their calculations (Muller et al., 1984). Figures 2

and 3 depict the comparison between our computed results and the results from a finite

difference model and corresponding water model developed by Muller's group. The parameters

used for the calculations are given in Table 3. It is clear that for both symmetric and un-

symmetric flow patterns the results computed from our 3-D finite element model compared very

well with those reported by Muller's group, indicating that our numerical model can provide

reasonably good prediction of fluid flow and heat transfer behavior of the fluids in the geometry
under consideration.
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(b) Melt convection in the cylindrical cavity without imposed magnetic field

Figures 4-6 show the evolution of the temperature and fluid flow fields for the Sn-35.5%

Pb melt in the cylindrical cavity of h/d=0.5. Both 3-D and 2-D views (plane views) are

presented. Note that the contour levels in Figure 4 correspond to those marked in Figure 6. It is

apparent that both the fluid flow and temperature fields evolve starting from some arbitrary

temperature pulse and eventually arrive at a steady state after 2000 time steps (corresponding to

the real time of 3.05 seconds and dimensionless t=2.0). At the final steady state, a symmetric

pattern is obtained with the flow moving downward at the center and upward from the side wall.

It should be stressed that for such an unstable case a final stage of the flow pattern is strongly

affected by the initial temperature pulse to induce the flow. When an appropriate temperature

pulse is used, a flow pattern opposite to what is shown is also possible. This has been reported

for water case and confirmed by our study as well (see Figure 2 above).

The transient melt flow and temperature distribution for the Sn-35.5% Pb melt in a cavity

ofh/d=l is shown in Figures 7-9. In this case, a non-symmetric flow pattern is developed in the

cylinder (see Figures 7(d), 8(d) and 9(g) and (h), which is caused by the non-symmetric pulse

(see Figure 7(a)). Again, a long simulation time (time step=2000) is required to reach the steady

state, afterwards the fields values are no longer changing.

Similar transient calculations were also carried out for the melt column with a higher

aspect ratio, h/d=3. The final steady state results are given in Figure 10. Clearly, the strong flow

is developed near the bottom which is fixed at a higher temperature. The flow pattern is non-

symmetric and the flow has a strong effect on the temperature field there as well. In the upper

portion of the melt pool, the fluid is basically quiescent.

(c) Magnetic damping effects on the melt flow in the cavity

Figures 11-13 shows the transient development of the fluid flow and temperature

distributions in the Sn-35.5% Pb melt in the cavity of h/d=0.5 with an applied magnetic field

(B=0.05 T), with other conditions kept the same as those in Figure 4-6. Comparison of Figs 11-

13 with Figs 4-6 clearly indicates the magnetic damping effects. In particular, when the system

reaches the steady state, the fluid flow level is damped very substantially and temperature profile

is basically fiat. Note also that the steady state is reached within about 800 time steps.

The magnetic damping effect on the melt flow in the Sn-35.5% Pb melt with an aspect

ratio of h/d=l is shown in Figures 14 and 15. Apparently, with an increase in the applied

magnetic field strength, magnetic damping becomes more effective, as expected. Figure 16

shows the numerical results obtained for magnetic damping of melt flow in the Sn-35.5% Pb

melt with an aspect ratio of h/d=3 in a transverse magnetic field (B=0.05T), where it can be seen

that the applied magnetic field results in the reduction of the melt flow in the liquid pool.

However, in comparison with Figure 10, the temperature field does not seem to change greatly.

The higher magnetic field effect on the fluid flow and temperature distributions in the Sn-

35.5% Pb melt for 3 different aspect ratios (h/d=0.5, h/d=l and h/d=3) is illustrated in Figures

17-19, where B=0.5 T. Clearly, for all the cases, the damping effects are sufficiently strong that

the temperature distribution in the system is basically controlled by diffusion, as is evident by the

parallel temperature profiles in these figures.



Oneof the importantreasonsfor applyingthemagneticdampingis to reducethepossible
melt flow turbulenceduring solidification. The currentmodel shouldhelp to provide some
insight into the effectivenessof magneticdampingeffectson the melt flow turbulencein the
system. Figure20 comparesthe effect of the different magneticfield strengthsasapplied to
damptheturbulencein thesystem(with h/d=l, Ra=8x 105).Inspectionof theplots in the figure
indicatesthat in the absenceof themagneticfield 03=0)andwith a small magneticfield present
03=0.005 T), the flow remains turbulent. With a higher magnetic field 03=0.05T), the

turbulence is substantially reduced and melt flows in the laminar region. With an even higher

magnetic field (B=0.5T), the turbulence is further reduced (the non-dimensionalized Umax is

reduced to 1.57 from 172.5). Note that the velocity is plotted with the same magnitude scale for

all the plots in Figure 20; the temperature contour clearly illustrates the effects of the melt flow

still present in the system.

Besides the results reported here, additional runs were made to investigate the effect of

the direction of the applied magnetic field on the fluid flow and heat transfer effects. Results

show that the magnetic field, when applied in the transverse direction provides the most effective

damping effects. For symmetric flow pattern, the x- and y-direction magnetic field seems to

produce similar results. For a non-symmetric flow pattern, the damping effect is stronger when

the magnetic field is applied at the plane in which flow circulation is strongest.

(d) Research findings that are different than those reported

Our numerical simulations unvealed two important points that are either unclear in the

literature or reported differently. For the Sn-35.5% Pb case of h/d=0.5, we found that

calculations have to proceed for longer time than 600 (dimensionless) used by Muller's group in

order to resolve the ordered pattern. Figure 21 shows the evolution of the fluid flow and

temperature profiles for the Sn-35.5% Pb melt at various time steps. According to Muller's

numerical study of molten melts with similar properties in which numerical simulations were

carried out up to 600 time steps (undimensionalized the same as this study) (Muller, 1988), no

symmetric flow pattern would exist for this condition. Our results compare well with theirs up to

the time they terminated their calculations (time step=600) (Figure 21 (a) shows the flow field at

time step=500). However, the flow is actually still evolving and a longer run time is needed for

this case to reach a steady state, as clearly indicated by the plotted results. For this particular

case under consideration, the steady state is attained at about time step=2000 and by then a

symmetric pattern is attained. It is noted here that Muller's work might have used a different

starting pulse because his flow pattern is just opposite to that reported here; nonetheless a steady

state of symmetric pattern should prevail if a long run time is used.

Another important finding resulted from this study, but unclear or misleading in the

literature, is that for 3-D magnetic damping modeling studies, the induced electric field must be

included in the current density and hence the Lorentz force calculations. Muller's group recently

did some 3-D simulations for semiconductor melt but without considering the electric field effect

(Baumgartl et al., 1990). They argued, based on the cited references, that the conductivity of the

molten metal and semiconductor is high and therefore the electric field is zero everywhere. Our

study indicated that these references dealt with either 2-D or axi-symmetric case with a special

arrangement of the magnetic field and for these special cases one can approve that the induced

electric field is indeed zero everywhere in the melt. This approval, however, can not be



generalizedto a fully 3-dimensionalcase. Indeed,our numericalcalculationsshowedthat for a
fully 3-D model the inducedelectricfield is not zeroeverywhereandhencemustbe includedin
thedampingforcecalculations.Someof thesecalculatedresultsaregivenin Figure22.

(e) Some unresolved issues that require further studies

From our limited numerical experiments, we also found that a pure application of

magnetic field does not necessarily decrease the fluid flow, as one would normally expect from

simple Hartmann flow studies. On contrary, a DC magnetic filed may actually enhance the

liquid convection in melts when a weak magnetic field is applied. A set of these results is given

in Figure 23. There it is clear that with B=0.005T, the flow velocity is actually increased and

damping effects are not obvious until the applied magnetic field is about 0.016 T. This

phenomenon seems to occur in all other cases we tested. Our studies indicate that this flow

augumentation seems to be dependent on the combination of the Rayleigh number of the system

and the strength of the applied magnetic field. In essence, there seems to exist a magnetic field

strength threshold above which the magnetic field acts to reduce the convection and below which

the applied field actually enhances the convection. Our limited numerical experiments seem to

suggest that in general a higher threshold value is needed for a higher Rayleigh number.

Because of the limited time and resource allocated for this project, we were unable to quantify

the effect in this report and also the possible effect of the other system parameters such as aspect

ratios on the threshold value to obtain magnetic damping effect. This should be a very important

issue that requires further study, considering the widespread use of magnetic damping in

solidification processes.

4. CONCLUDING REMARKS

A fully 3-D numerical model was developed to represent magnetic damping of complex

fluid flow, heat transfer and electromagnetic field distributions in a cylindrical melt cavity. The

model was developed based on our in-house finite element code for the fluid flow, heat transfer

and electromagnetic field calculations, which has been tested against benchmark test problems

that are solved by other commercial codes as well as analytical solutions when available. The

numerical model was tested against available numerical and experimental results reported for

water. With the model so tested, various numerical simulations were carried out for the Sn-

35.5% Pb melt. Numerical results showed that magnetic damping can be effectively applied to

reduce turbulence and flow levels in the melt undergoing solidification and over a certain

threshold value a higher magnetic field resulted in higher velocity reduction. It is found also that

for a fully 3-D representation of the magnetic damping effects, the induced electric field in the

melt does not vanish, as some researchers suggested, and must in general be included even for

highly conducting melts such as molten metal and semiconductors. Also, for the study of the

melt flow instability, a long enough simulation time has to be applied to ensure the final fluid

flow circulation pattern. Moreover, our numerical results suggested that there seems to exist a

threshold value of applied magnetic field above which magnetic damping becomes possible and

below which the convection in the melt is actually enhanced. Because of the limited financial

resource allocated for the project, were ere unable to carry out extensive study on this effect,

which should warrant further theoretical and experimental study. In conclusion, the numerical

model developed in this study may now be used to study the fundamentals governing the

magnetic damping phenomena in the solidifying melts and should serve as a useful tool for

exploring necessary design parameters magnetic damping experiments.
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APPEDIX I: PROBLEM STATEMENT

To simplify the calculations, magnetic field damping effects on the fluid flow in a 3-D

cylindrical cavity as shown in Figure A1, instead of the whole solidification process as appears

in Figure 1, are considered.

g
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Figure A 1. Schematic representation of the 3-D model for magnetic damping studies.

The mathematical equations governing the fluid flow, temperature distribution and

electromagnetic field distributions in the melt, along with appropriate boundary conditions, are
written as follows.

GOVERNING EQUATIONS

Continuity Equation:

Vou =0 (1)

Momentum Equation:

p --_-+u°Vu =-Vp+_V2u-pgp,(T-ro)+O'.(E+uxB)xB

Energy Equation:

p p.-=- +u*VT =kV

(2)

(3)
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Electromagnetic Field Equation:

J = crm(E+u× B) (4)

V*J =0 (5)

V x E = 0 (6)

E = -V(D (7)

=V.(B×.)= s.(Vx.) (8)

Thus for the problem under consideration, the Maxwell equations reduces to one equation

for an unknown electric potential, that is, Eq. (8), and other relevant quantities can be calculated

once the potential is known. This simplification comes from the fact that for metallic liquid, the

induced magnetic field b is proportional to the magnetic Reynolds number and that the magnetic

Reynolds number is much smaller than imposed magnetic field Bo, thereby B=Bo. This curl free

field allows us to write E as the gradient of an electric potential _. This, combined with the fact

that the current density is a divergence free field, results in V 2_ = B ° (V x u).

The boundary conditions for the problem represent the physical constraints needed to

solve the problem. For the present problem, the no slip conditions are applied at the solid walls,

side walls are thermally insulated, the top and bottom walls are at the fixed temperatures and the

electric current density is zero on the solid walls as no current can escape from the system,

because the walls are electrically insulated as well. Mathematically, these conditions are given

as follows.

_T C3_
Side Walls: _ = 0 u = 0 _ = 0

8n c3n

c9_
Top Wall: T = TL u = 0 - 0

8n

8_
m=O

Bottom Wall: T = T u u = 0 8 n

10



To facilitate numericalcomputations,it is moreconvenientto non-dimensionalizethe
aboveequationsand boundaryconditions. To do that,we usethe standardvelocity, time, and
length scalesfor naturalconvection in encloures[1] and define the following dimensionless
variables,

u =uh/a x =x/h t =tct/h 2

p" = ph 2 I pct 2 T" =(r-rL)/(r. -rL)

B" = B/B o *" = _ / er.B0 E'=Eh/ctB o j" = Jh/cr orbo

With the above definitions, the governing equations and the boundary conditions may be re-

written in non-dimensional forms,

Continuity Equation:

v" u"= 0 (9)

Momentum Equation:

On* *

--+u .V'u" =-V'p" +PrV*2u * -RaPrT'e, +Ha2Pr(-V'_" +u" xB')xB" (10)
dt"

Energy Equation:

dT" = V.2T._+u" .V'T" (11)
dt"

Electromagnetic Field Equation:

V'2*" = V* (B" × u')= B" * (V" × u') (12)

11



Boundary conditions

Side Walls: 0T" 0_"
--=0 u =0 --=0

On On

Top Wail: T" =0 u" = 0 --=O_" 0
On

Bottom Wall: T" = 1 u ° = 0 0 _" _ 0
On

The non-dimensionalization process often gives rise to a set of dimensionless parameters

that characterize the performance of the system under study. For our problems, these parameters

are given in the following table.

DIMENSIONLESS SYSTEM PARAMETERS

Dimensionless Number Definition

Rayleigh number

Prandtl number

Hartman number

Thermal Diffusivity

Kinematic Viscosity

Ra = flg(Tl_ - TL )h3

VCg

V
PF _ --

k
_mm

pcp

/.t
V=--

P

12



APPENDIX Ih FINITE ELEMENT FORMULATION

1. Discretization and Interpolation:

//

J

_X
_<

0 ' _ 0

1

Figure A2. Finite element discretization of the 3-D cavity for magnetic damping of fluid flow studies.

We started with discretizing the domain into a finite number of elements as shown in

Figure A2. Over each element, the dependent variables u, T and _ are interpolated by their

nodal point values and the shape functions of _(xi) and for P we use _xi) as the interpolation

functions. Then the velocity, pressure, temperature and electric potential fields are approximated

by:

uj(xi,t ) = _ruj(t) (13)

P(x,,t) = 9'rp(t) (14)

T(x,, t) = q_rT(t) (15)

tTi)(xi,t ) ----_bro(t) i,j =1, 2,3 (16)

where Uj, P, T and • are vectors of approximate values of element nodal points.

Our calculations employ 8-node elements, as shown in Figure A3. The interpolation

functions expressed in local coordinate are given by:

13



¢) = {Nj,Nj,...,Nj,...} r ; p' = 1 (17)

Nj = 1(1 + _:_j)(1 + rp7j) + (1 + g'_'j) (18)

where ¢_,r/j,_'j =+1, j=1,2,3,..., 8. Note that g/ is chosen one order lower than the

interpolation function for the velocity field to satisfy the Babu_ka-Brezzi stability condition.

q

3 '_

4d .

2

Figure A3. 8-node element in local coordinate system.

The interpolated velocity and other field variables can not satisfy the governing equations

exactly. Substituting the interpolation equations into the governing equations, we get the

residual functions Rt, R2, R3 and R4, which respectively represent error functions of the

momentum, mass conservation, energy and electric potential equations. To simplify the

calculations, the pressure may be treated using the penalty method, by which the penalty form of

the continuity equation becomes,

p=-lv.u (19)
g

where E is the penalty parameter.

Substituting the interpolation functions

residual functions for the field variables,

fl (4, _, Ui,P,T, _) = R l

f2 (Ip',_,Ui,P) = R 2

into the governing eqations, one has the following

Momentum (20)

Penalty Continuum (21)

14



f3 (4, Ui,T) -- R 3 Energy (22)

fa (_b, U, ,_) = R 4 Electric Potential (23)

2. The Galerkin Weighted Residual Method:

Finite element formulation of nonlinear equations, as discussed in the present case, is carried

out using the Galerkin Weighted Residual method. By this method, the residuals of the

differential equations are made orthogonal to independent weighting functions, and these

weighting functions are chosen to be the same as the shape functions for the unknowns:

_R 2 v/ dV = 0 (24)

_R, _bdV = 0 i =1, 3, 4 (25)

Applying the Green theorem to the above equations and carrying out involved algebraic

operations, one has the following set of matrix equations for the unknowns defined at the nodal

points,

MI_+ K(U)U + CpP + CsT = F(U) (26)

M r T+ Kr (U)T = F r (27)

- z MpP = Ct, l'V (28)

K._+C®U =F. (29)

where now U is a global vector containing all the nodal values of u, v and w. P, T and q_ are

global pressure, temperature and electric potential vectors respectively. M is the mass matrix,

K(U)-N(U)+Ka_+K_ is the stiffness matrix, where I_ is the viscous stiffness matrix, and N(U)

is the advection stiffness matrix. Cp is gradient matrix, KB the buoyancy matrix and F(U) the

"force" vector which incorporates the Lorentz force term and the boundary conditions. In the

temperature, penalty continuum and electric potential equations, the subscripts T, P and q_ refer

to the corresponding sets of coefficients. Solving the pressure from continuity equation and

substituting back into the momentum equation, one has the final form of the matrix

representation of the governing equations in matrix form,

Ii°°lI°l0 °l[il00 I ] (30)

15



wherethecoefficientmatricesaredefinedby:

M = M r = _bqkrdV ;

K r = K. = _V_b .v(jrdV ;

K(U) = N(U) + K_, + K u ;

_VV r .Mp = dV , K u = _Pr_Tfb • VqkrdV

N(V) = NTOJ) = _u . VOTdV

Kr(U ) = Nr(U)+Kr

c, = dr; c/: T)

K. = _RaPrg qk_br dv ; K. =-_bB•(V ×_bTfi)dV

F(U) = {F, (U), F=(U), F, OJ)} r ; Fy(U) = - _o'0 dS + _Ha2Pr(-VcDxB)jdV

F r :-_q_qkdS; F. =-_qzqkdS

where K u is the same for all 3 velocity components and fik refers to the kth component of the

velocity.

The above matrix equations are solved using the successive substitution method and the

time derivatives are approximated using the implicit finite difference scheme. Both variable time

steps with automatic error tracking and time step automation and fixed time steps may be

applied. The majority of the results presented in the report are calculated using the fixed time

steps.

16
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Table 1: Parametersusedfor calculations

I Parameter Value

I Diameter of cylinder (d)Aspect ration (h/d)

Top wall temperature (Tt)

Magnetic field Bo

Gravity (g)

7x10 -3 m

0.5, 1.0, 3.0

520 K

0.0--- 0.5 T

9.8 m s2

18



Table 2 Parameters of liquid metal used for calculations

Property ( Sn-35.5% Pb ) Value

Density of the melt (p)

Thermal expansion coefficient (/8)

Thermal conductivity of the melt (k)

Specific Heat (Cp)

Viscosity of the melt (kt)

Electronic conductivity of the melt (O'm)

Thermal diffusivity of the melt (or)

Kinematic viscosity of the melt (v)

1.068x 104 kg m "3

1.23x10 -4 K -1

14.9 W m-lK -t

173.70 J Kg t K -I

2.410x10 "3 Nsm "2

3.402x 107 f2m l

8.032x 10 -6 m 2 s l

2.257x10-7 m2 s -I

Associated dimensionless numbers Value

Prandtl number (Pr)

Rayleigh number (Ra)

Hartmann number (Ha)

0.0281

4.0x103- 8.0x105

0--1247.5

Time and velocity scales used to

normalize the results presented in all the

figures

Value

Time scale (x) 1.53 (sec)

Velocity scale (Uo) 2.29 x 10 -3 (m/s)

19



Table 3 Properties of water used for calculations

Property Value

Thermal expansion coefficient (/3)

Thermal diffusivity of the melt (et)

Kinematic viscosity of the melt (v)

0.227×10 -3 K -1

1.145x 10 .7 m z sa

0.963× 10 -6 m 2 s 1

Associated dimensionless numbers Value

Prandtl number (Pr)

Rayleigh number (Ra)

6.7

2.88x103- 1.0xl05

2O
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Figure 2. Comparison of our 3-D finite element model predictions for the velocity and

temperature distributions (a) with the finite difference results (b) reported by Muller's research

group (Muller et al., 1984) for natural convection of water (H20) in a cylindrical container heated
from below. The parameters used for calculations: h/d=0.5, Ra=2800 and Pr=6.7 (H20).
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group (Muller et al., 1984) for natural convection of water (H20) m a cylindrical container heated

from below. The parameters used for calculations: h/d= 1, Ra= 17500 and Pr=-6.7 (H20).
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Figure 4. 3-D view of temperature profile evolution for Sn-35.5% Pb melt, Pr=-0.0281,
Ra=4000 (Tbouom = 660 K), h/d=0.5 at (a) t=0; (b) t=0.040; (c) t=0.400; and (d) t=2.0(X)

(=2(X)0 time steps, steady state). The contour values are the same as shown in Figure 6.
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Figure 6. Transient development of flow fields and temperature profiles for Sn-35.5% Pb

viewed in the x-z and y-z planes: Ra=4000 (Xbottom = 660 K), Pr--O.0281, h/d=0.5; (a) and
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Figure 7. 3-D view of temperature profile evolulation tor Sn-35.5%Pb alloy

Pr=0.0281, Ra=104 (Tbo,om =564 K), h/d=l.0: (a) t=0; (b) t=0.10; (c) t=0.80; and

t=2.20 (time steps=2200, steady state). The contour values are given in Figure 9.
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Figure 9. Time evolution of flow fields and temperature profiles Ior Sn-35.5Pb melt in

the x-z and y-z planes, Pr--0.0281, Ra=104 (Tbot_om=564 K), h/d=l.0: (a) and (b) t=0.02;

(c_ and (d) t=0.10; (e) and it) t=0.80: and (g) and (h) t=2.20 (steady state,

Umax= 11.47).
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The contour values are given in Figure 13.
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Figure 21. Fluid flow and temperature distribution in the Sn-35.5% Pb melt in 3-D cavity

without the presence of an applied magnetic field. According to Muller's numerical simulations

(run time (dimensionless) up to time steps=600), no symmetric flow patterns are possible.

However, our calculations showed that if a longer time is used, a symmetric flow pattern starts to

evolve and gradually attains a steady state. For the case shown, at time step=500, the computed

results are similar to Muller's; and a steady state condition seems to be reached at time

step=2400. The results here seem to suggest that additional work might be needed to further

clarify some of the conclusions made in earlier studies by Muller's group (Muller 1988).
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Figure 22. Comparison of calculatexl results with and without the electric field term,
Pr=O.0281, Ra=4000, Wd=0.5: (a) x-z plane view of flow field and temperature

distribution, B=0, Umax=2.7790: (b) x-z plane view of vehx:ity and electric [x)tential
field. B=0.005T, Umax=2.2803: (c) x-z plane view of flow field and temperature

distribution with E sO to 0 and B=O.OO5T, Umax=2.3531; (d) x-z plane view of velocity

and electric potential field. B=0.05T, Umax=0.2254; (e) x-z plane view of flow field and

temperature distribution with E set to 0 and B=0.05T, Umax=0.3345.
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Figure 23. Dependency of the magnetic damping effects on the applied magnetic field stren_h.

Note Umt witl_ a weak nmgneaic lield, file convection is actually enltanced. File tliresllold value ol
the applied magnetic field to achieve damping effects seerrts to be slightly larger than 0.016T.


